Решения по управлению персоналом
ЗАПРОС НА УСЛУГИ

Big Data идет в HR

21.01.2015

Превращаем людей в цифры. Как превратить людей в цифры, чтобы их понять? 
 
В современном мире с каждым годом количество информации растет. Этому способствует научный прогресс (новые технологии появляются, и тут же устаревают), виртуализация и автоматизация многих бизнес-процессов, оцифровка данных. Необходимость их обработки повлекла за собой взрывной рост вычислительных мощностей и скоростей. Сейчас полученные данные дают возможность не просто анализировать образ потребителя, объем плановых затрат или спрос на те или иные туристические направления, но и помогают моделировать будущее. Именно поэтому идея Big Data («больших данных») появилась и активно развивается в последние 2-3 года. 

Анализ данных использовали в банковской сфере, для выявления неочевидных затрат; в биржевой деятельности, чтобы предсказать поведение рынка. Какое-то время тема больших данных обходила направление управления персоналом (далее HR) стороной, так как специалисты данной области изначально сосредоточены на локальных процессах, развитии персонала, построении заработных плат, подборе или документообороте, нежели аналитических инструментах. Если смотреть правде в глаза, то очень мало кто из менеджеров по персоналу владеет системным анализом данных, хотя статистика - один из обязательных предметов при изучении психологии и на факультетах управления персоналом. 

Сейчас Big Data в основном применяется в двух направлениях: подбор персонала и управление талантами. 

Рекрутинг 

После того как компании поняли, что подбор сотрудников похож на маркетинг и своего кандидата можно вычислить так же, как своего потенциального клиента, многие компании стали анализировать данные, определяя наиболее подходящие методы подбора, избавляясь от неэффективных этапов. 

Например, компания Google отказалась от сложных задач на входящих интервью именно потому, что успешное их решение не связанно с эффективностью дальнейшей деятельности специалиста. 

А другая компания, после анализа данных, поняла, что самые лояльные сотрудники работают в радиусе 5 километров от нее, что стало причиной переноса офиса в более удобный район, зато привело к снижению текучки, без дополнительных вложений в мотивацию. 

Анализ объемов и валидности потоков, сроков подбора и процента успешного прохождения испытательного срока показывает уровень эффективности рекрутинга в компании. Мы уже несколько раз сталкивались с сопротивлением со стороны сотрудников службы персонала, при анализе системы подбора. HR понимают, что это может вскрыть их неэффективность и некомпетентность и всерьез опасаются разочарования руководства. 

Управления талантами 

Компании пробуют анализировать эффективность работы и личностные особенности кандидатов, чтобы уже при приеме определять самых эффективных. Пока подобные исследования идут с переменным успехом, кто то рапортует, что его подход идеально сработал, другие пишут что он не дает ни одного релевантного результата. 

В тоже время, наш опыт говорит о положительных эффектах в работе с талантами и кадровым резервом. Каждая уважающая себя компания создает модель компетенций, обычно их от 6 до 15. Обычно они создаются на основании виденья руководства и экспертизы консультантов, которые ориентируясь на стратегию, определяют наиболее ключевые. Анализ данных эффективности работы и оценки компетенций позволяют определить наиболее важные из них, выделить ключевые. Например, компетенция «влияние» оказалась не ключевой для менеджеров по продажам, наиболее важной и определяющей их успех явилась компетенция «эффективная коммуникация». А для руководителей отделов компетенций определяющими их успешность стали «обратная связь» и «ориентация на результат». Если эти качества были у менеджера развиты, то его подразделение показывало самые высокие результаты. В дальнейшем это позволило сократить число компетенций, упростить оценку, поднять эффективность работы подразделений. 

Но количество направлений HR, где можно применять Big Data, ограничено. Данные, которые собирают в отделах персонала (загрузка персонала, процент отсутствий, время обучения, уровень производительности, опыт работы,) создают видение внутренних показателей в прошлом, вместо того чтобы обратить внимание на будущие изменения и перспективы не только внутри компании, но и вне ее. 

HR продолжает фокусироваться на данных, а не на бизнес проблемах как таковых 

Дело в том, что Big Data - это не инструмент для HR, это инструмент для бизнеса. Статистика и аналитика, которая совершается внутри одного HR, зачастую не является Big Data. 

Выводы и закономерности, основанные на «больших данных», затрагивают все области компании, будь то финансы, логистика, информационные технологии, маркетинг или управление персоналом. Мы не можем проанализировать массивы данных и подсказать бизнесу и его направлениям, что делать и куда двигаться, исходя из изменений рынка кандидатов. Этот инструмент работает по-другому: мы исходим из потребностей бизнеса, определяем, что влияет на ту или иную цель, и, благодаря этому, понимаем, какие данные нам нужны для анализа и формирования решений. Таким образом, цель декомпозируется на все функциональные подразделения бизнеса и тогда, например, рекрутинг может сформировать портрет идеального кандидата и определить, где нам искать нужных людей. 

HR и Big Datа тесно взаимосвязаны по своему существу. Они нужны для повышения эффективности бизнеса, для выстраивания стратегии, которая приведет организацию к новым горизонтам и возможностям реализовать скрытый потенциал. 

К сожалению, большинство подразделений HR не готовы к анализу данных, несмотря на то, что автоматизация бизнес-процессов этого направления активно идет уже более 15 лет в России. Это связанно с тем, что относительно небольшое число компаний внедрило системы ERP, которые позволяют накопить необходимые данные, а так же сами HR-специалисты сохраняют далеко не все данные. 

Пять стадий работы с Big Data: 

Обычно, HR-службы проходят 5 стадий работы с Big Data: 

Стадия 1 - Субъективные решения. 

Изначально в компаниях не было систем, накапливающих HR-данные, поэтому решения в этой области основывались на приобретенном опыте, мнениях «уважаемых» людей и догадках. 

Стадия 2 - Использование внутренней информации. 

Появились системы, помогающие аккумулировать данные. HR-службы стали собирать «простые данные» для подкрепления своих решений (например, факты экономической целесообразности). 

Стадия 3 - Создание и использование внутренних стандартов. 

HR-службы стали рассматривать свои решения не только в рамках своего направления, но и изучая данные внутри компании (внутренний поиск кандидатов, формирования корпоративных стандартов). 

Стадия 4 - Применение глубокой аналитики. 

HR-службы делают шаг в сторону аналитики, более похожей на маркетинговую: анализ текучести и привлекательности компании для соискателей, работа над брендом компании. Происходит анализ смежных направления внутри компании. 

Стадия 5 - Прогнозирование. 

На этой стадии HR приходит к использованию Big Data, чтобы определить влияние принимаемых решений относительного человеческого капитала на будущем всей компании, используя все возможные данные компании: финансовые, маркетинговые, данные продаж и HR, а также данные вне компании: информация о конкурентах, рынке, экономической и политической ситуации страны и т.п. 

Как же Big Data может помочь бизнесу? 

Приведем несколько примеров, как задачи, которые нужно решить бизнесу, ведут к использованию Big Data в HR. 

Компания по производству и продаже вентиляционного оборудования вкладывала большие деньги в развитие своих менеджеров по продажам. Один сотрудник проходил тренинг минимум раз в три месяца. В тоже время, данные по продажам по сравнению с конкурентами не радовали. Для выявления причины, был проведен анализ ключевых показателей (KPI) руководителей на основе прибыльности и убыточности их подразделений; обратной связи от клиентов и показателей эффективности сотрудников, влияющих на бизнес-результат и их мотивацией. В результате стала видна прямая зависимость между слабым взаимодействием с клиентами и неэффективным управлением сотрудниками подразделения. То есть проблема была не в продавцах, а в их руководителях. Так же сменился контингент клиентов, а подходы остались прежними. После были приняты управленческие решения по изменению некоторых руководящих лиц, а для других были в обязательном порядке запланированы коучинг-сессия и система развития. Big Data помогла избавиться от субъективного мнения о развитии сотрудников, направив средства и внимание руководства на ключевые факторы, влияющие на прибыль. 

Компания, работающая в сфере образовательных услуг, несколько раз уже попадала в ситуацию, когда обученные сотрудники, которые состояли в кадровом резерве, внезапно уходили. Это серьезно подрывало имидж, и сказывалось на доходах. С применением технологий Big Data, был разработан инструмент удержания, который анализирует целый ряд различных типов данных (образование, место работы, семейное положение, опыт и достижения, тип работы, длина проектов, проектные роди за последний год, продвижение по службе или его отсутствие). На основе полученных данных был выстроен алгоритм, который выделял людей, находящихся в зоне риска. Ежемесячно руководители и HR служба получали данные о сотрудниках находящихся в зоне риска (это означало, что они профессионально выгорают, не мотивированы, могут планировать уход из компании), чтобы можно было принять меры по удержанию, мотивации, вовлечению сотрудника. Это позволило снизить общую текучесть персонала и добиться того, что из компании уходило не более 2-3 резервистов в год. Фактически, Big Data стала инструментом для мониторинга текущего состояния и прогнозирования будущих рисков. 

Компания занимается поставной и установкой сложного оборудования в сфере энергетики. Затраты на 200 менеджеров проекта составляли более 800 миллионов рублей в год, но их стоимость не соответствовала качеству выполняемой ими работы. Генеральный директор предполагал, что промышленность не привлекательна для хороших проектных менеджеров. И поэтому сосредотачивался на других методах повышения прибыльности. Был проведен анализ эффективности родителей проекта, их опыта, уровень развития компетенций. В результате стало ясно, что нацеленность менеджера на результат была у более важна, чем технические навыки и опыт работы в отрасли. На ключевые проекты были подобраны лучшие кандидаты по новым критериям, для них было проведено обучение специфике бизнеса и технологиям, используемым компанией. Доход компании увеличился благодаря замене процессных людей на результативных и их обучению предметной области отрасли. 

Очень многое зависит от правильно заданного вопроса. Он должен касаться не какой-то функции, а конкретной проблемы. В данной ситуации этим вопросом было: «Как мне привлечь эффективный персонал?». Если бы генеральный директора сразу его задал, то не потерял бы 5 лет на неэффективном подборе. 

Стоит ли специалистам в HR бояться перемен? 

Начало эры «больших данных», безусловно, сначала усложнит жизнь HR-специалистам. Функция управления персоналом не всегда рассматривается бизнесом как ключевая, некоторые руководители не рассматривают HR-подразделение как помощника в решении бизнес задач. 

Именно поэтому HR-специалисты должны более внимательно слушать и обращать внимание на то, что важно для бизнеса, от чего он зависит и выявлять закономерности и взаимосвязи бизнеса и человеческого капитала компании. В идеале HR-специалист должен отлично разбираться в цифрах, подсчетах и статистике, чтобы уметь рассчитать то или иное влияние HR-изменений внутри компании и его выражение в финансовом эквиваленте. 

Если HR считает, что ему не нужно уметь общаться на финансовом языке с бизнесом, то эра «больших данных» является для него серьезной угрозой. 

Быстрее всего такой инструмент как Big Data приживается в областях, тесно связанных с фактами, конкретными данными и статистикой: 

1. Банки и Финансы. Компании этой отрасли построены на числовых данных, они работают со статистиками и цифрами каждый день, комфортно себя ощущают в этой среде и не верят ничему, кроме фактов. 

2. Ритейл уже давно использует данные для повышения своей производительности, они задействуют CRM-системы, социальные сети, карты лояльности. Они точно знают как использовать данные о потребителях через своих сотрудников, чтобы достичь нужных результатов, и видят будущее в анализе данных. 

Big Data не обязательно должна помочь в два раза увеличить рентабельность инвестиций в HR, но точно поможет понять бизнес-лидерам, как человеческий капитал может создать добавленную стоимость компании. 

Что будет с HR и Big Data 

В ближайшие несколько лет в компаниях, где есть развитые информационные системы, начнут проводить анализ данных и искать взаимосвязи. Открывшиеся возможности дадут серьезный прирост эффективности. Появятся так же вакансии в области аналитики в HR. 

При внедрении информационных систем в компании руководство будет интересовать так же наличие модулей, позволяющих проводить аналитику Big Data. Компании начнут целенаправленно анализировать все данные, специально их готовить для удобства анализа. В результате появятся межфункциональные KPI, например HR и отдел продаж. 

Так же Big Data покажет руководству насколько важно управление персоналом: к сожалению, у нас часто об этом забывают.

Несколько советов для тех, кто хочет взяться за Big Data прямо сейчас: 

При работе с «большими данными» важно понимать, что данных действительно очень много, в них легко запутаться и «утонуть», поэтому при начале работы с ними необходимо соблюдать несколько условий: 
1. Мы отталкиваемся от потребностей или проблем бизнеса, а не от наличия данных. 
2. Данные должны быть взяты из максимального количества источников и взаимосвязаны между собой (финансы, маркетинг, продажи, HR, конкуренты, рыночные условия, законы и т.п.) 
3. Не нужно пытаться проанализировать данные в объеме всей компании сразу. Симплифицируйте: возьмите «пилотный» блок, на котором можно проверить взаимосвязи и представить руководству. После одобрения руководства можно подключать дополнительные ресурсы и проводить глобальное исследование. 
4. Данные должны анализировать деятельность нескольких разнопрофильных специалистов, чтобы увидеть разные виды взаимосвязей между данными и бизнесом. Исходите из возможности людей интерпретировать данные и использовать их, применяя к результатам бизнеса. 
5. Применение новых методов повлекут за собой смену части команды HR. Подбирайте людей, которые нацелены на результат, проактивны, любознательны, обладают коммерческим взглядом и любят сложные задачи, чтобы создать атмосферу, в которой четко обоснованные решения не причинят никому дискомфорта. 

Данные и даже «большие данные» - это всего лишь инструмент, а не ответ на все вопросы. . 

Работая с Big Data, мы должны быть аккуратными и не забывать, что работаем с людьми, а к ним не всегда можно применить сухие факты и безэмоциональную логику Только найдя баланс между чистым HR и чистым бизнес-подходом, мы сможем реализовать идею Big Data в управлении персоналом и вырастить внутри компании HR нового поколения. 
Поделиться в социальных сетях:
Популярные новости